Sparse Cholesky factorization for solving nonlinear PDEs via Gaussian processes

Author:

Chen Yifan,Owhadi Houman,Schäfer Florian

Abstract

In recent years, there has been widespread adoption of machine learning-based approaches to automate the solving of partial differential equations (PDEs). Among these approaches, Gaussian processes (GPs) and kernel methods have garnered considerable interest due to their flexibility, robust theoretical guarantees, and close ties to traditional methods. They can transform the solving of general nonlinear PDEs into solving quadratic optimization problems with nonlinear, PDE-induced constraints. However, the complexity bottleneck lies in computing with dense kernel matrices obtained from pointwise evaluations of the covariance kernel, and its partial derivatives, a result of the PDE constraint and for which fast algorithms are scarce.

The primary goal of this paper is to provide a near-linear complexity algorithm for working with such kernel matrices. We present a sparse Cholesky factorization algorithm for these matrices based on the near-sparsity of the Cholesky factor under a novel ordering of pointwise and derivative measurements. The near-sparsity is rigorously justified by directly connecting the factor to GP regression and exponential decay of basis functions in numerical homogenization. We then employ the Vecchia approximation of GPs, which is optimal in the Kullback-Leibler divergence, to compute the approximate factor. This enables us to compute ϵ \epsilon -approximate inverse Cholesky factors of the kernel matrices with complexity O ( N log d ( N / ϵ ) ) O(N\log ^d(N/\epsilon )) in space and O ( N log 2 d ( N / ϵ ) ) O(N\log ^{2d}(N/\epsilon )) in time. We integrate sparse Cholesky factorizations into optimization algorithms to obtain fast solvers of the nonlinear PDE. We numerically illustrate our algorithm’s near-linear space/time complexity for a broad class of nonlinear PDEs such as the nonlinear elliptic, Burgers, and Monge-Ampère equations. In summary, we provide a fast, scalable, and accurate method for solving general PDEs with GPs and kernel methods.

Funder

Air Force Office of Scientific Research

Publisher

American Mathematical Society (AMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3