Cosets from equivariant 𝒲-algebras

Author:

Creutzig Thomas,Nakatsuka Shigenori

Abstract

The equivariant W \mathcal W -algebra of a simple Lie algebra g \mathfrak {g} is a BRST reduction of the algebra of chiral differential operators on the Lie group of g \mathfrak {g} . We construct a family of vertex algebras A [ g , κ , n ] A[\mathfrak {g}, \kappa , n] as subalgebras of the equivariant W \mathcal W -algebra of g \mathfrak {g} tensored with the integrable affine vertex algebra L n ( g ˇ ) L_n(\check {\mathfrak {g}}) of the Langlands dual Lie algebra g ˇ \check {\mathfrak {g}} at level n Z > 0 n\in \mathbb {Z}_{>0} . They are conformal extensions of the tensor product of an affine vertex algebra and the principal W \mathcal {W} -algebra whose levels satisfy a specific relation.

When g \mathfrak {g} is of type A D E ADE , we identify A [ g , κ , 1 ] A[\mathfrak {g}, \kappa , 1] with the affine vertex algebra V κ 1 ( g ) L 1 ( g ) V^{\kappa -1}(\mathfrak {g}) \otimes L_1(\mathfrak {g}) , giving a new and efficient proof of the coset realization of the principal W \mathcal W -algebras of type A D E ADE .

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference35 articles.

1. [A1] T. Arakawa, Chiral algebras of class 𝒮 and Moore–Tachikawa symplective varieties, arXiv:1811.01577 [math.RT], 2018.

2. Rationality of 𝑊-algebras: principal nilpotent cases;Arakawa, Tomoyuki;Ann. of Math. (2),2015

3. Associated varieties of modules over Kac-Moody algebras and 𝐶₂-cofiniteness of 𝑊-algebras;Arakawa, Tomoyuki;Int. Math. Res. Not. IMRN,2015

4. Urod algebras and translation of W-algebras;Arakawa, Tomoyuki;Forum Math. Sigma,2022

5. [ACK] T. Arakawa, T. Creutzig, and K. Kawsetsu. in preparation.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ordinary modules for vertex algebras of 1|2;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3