A user’s guide to basic knot and link theory

Author:

Skopenkov A.

Abstract

We define simple invariants of knots or links (linking number, Arf-Casson invariants and Alexander-Conway polynomials) motivated by interesting results whose statements are accessible to a non-specialist or a student. The simplest invariants naturally appear in an attempt to unknot a knot or unlink a link. Then we present certain ‘skein’ recursive relations for the simplest invariants, which allow us to introduce stronger invariants. We state the Vassiliev–Kontsevich theorem in a way convenient for calculating the invariants themselves, not only the dimension of the space of the invariants. No prerequisites are required; we give rigorous definitions of the main notions in a way not obstructing intuitive understanding.

Publisher

American Mathematical Society

Reference27 articles.

1. Topological invariants of knots and links;Alexander, J. W.;Trans. Amer. Math. Soc.,1928

2. [As] A. Asanau, A simple proof that connected sum of ordered oriented links is not well-defined, preprint.

3. Introduction to Vassiliev Knot Invariants

4. Knots and links in spatial graphs;Conway, J. H.;J. Graph Theory,1983

5. [CSK] * \url{https://en.wikipedia.org/wiki/Connected_{s}um#Connected_{s}um_{o}f_{k}nots}

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3