Toric eigenvalue methods for solving sparse polynomial systems

Author:

Bender Matías,Telen Simon

Abstract

We consider the problem of computing homogeneous coordinates of points in a zero-dimensional subscheme of a compact, complex toric variety X X . Our starting point is a homogeneous ideal I I in the Cox ring of X X , which in practice might arise from homogenizing a sparse polynomial system. We prove a new eigenvalue theorem in the toric compact setting, which leads to a novel, robust numerical approach for solving this problem. Our method works in particular for systems having isolated solutions with arbitrary multiplicities. It depends on the multigraded regularity properties of I I . We study these properties and provide bounds on the size of the matrices in our approach when I I is a complete intersection.

Funder

H2020 European Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference56 articles.

1. Immaculate line bundles on toric varieties;Altmann, Klaus;Pure Appl. Math. Q.,2020

2. An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations;Auzinger, W.,1988

3. Software, Environments, and Tools;Bates, Daniel J.,2013

4. M. R. Bender. Algorithms for sparse polynomial systems: Groebner basis and resultants. PhD thesis, Sorbonne Université, June 2019.

5. Towards mixed Gröbner basis algorithms: the multihomogeneous and sparse case;Bender, Matías R.,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toric Sylvester forms;Journal of Pure and Applied Algebra;2024-11

2. Dimension results for extremal-generic polynomial systems over complete toric varieties;Journal of Algebra;2024-05

3. A Fast Algorithm for Computing Macaulay Null Spaces of Bivariate Polynomial Systems;SIAM Journal on Matrix Analysis and Applications;2024-01-24

4. Polynomial Equations: Theory and Practice;Polynomial Optimization, Moments, and Applications;2023

5. Solving Sparse Polynomial Systems using Gröbner Bases and Resultants;Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3