Regular extensions and algebraic relations between values of Mahler functions in positive characteristic

Author:

Fernandes Gwladys

Abstract

Let K \mathbb {K} be a function field of characteristic p > 0 p>0 . We have recently established the analogue of a theorem of Ku. Nishioka for linear Mahler systems defined over K ( z ) \mathbb {K}(z) . This paper is dedicated to proving the following refinement of this theorem. Let f 1 ( z ) , , f n ( z ) f_{1}(z),\ldots , f_{n}(z) be d d -Mahler functions such that K ¯ ( z ) ( f 1 ( z ) , , f n ( z ) ) \overline {\mathbb {K}}(z)\left (f_{1}(z),\ldots , f_{n}(z)\right ) is a regular extension over K ¯ ( z ) \overline {\mathbb {K}}(z) . Then, every homogeneous algebraic relation over K ¯ \overline {\mathbb {K}} between their values at a regular algebraic point arises as the specialization of a homogeneous algebraic relation over K ¯ ( z ) \overline {\mathbb {K}}(z) between these functions themselves. If K \mathbb {K} is replaced by a number field, this result is due to B. Adamczewski and C. Faverjon as a consequence of a theorem of P. Philippon. The main difference is that in characteristic zero, every d d -Mahler extension is regular, whereas in characteristic p p , non-regular d d -Mahler extensions do exist. Furthermore, we prove that the regularity of the field extension K ¯ ( z ) ( f 1 ( z ) , , f n ( z ) ) \overline {\mathbb {K}}(z)\left (f_{1}(z),\ldots , f_{n}(z)\right ) is also necessary for our refinement to hold. Besides, we show that when p d p\nmid d , d d -Mahler extensions over K ¯ ( z ) \overline {\mathbb {K}}(z) are always regular. Finally, we describe some consequences of our main result concerning the transcendence of values of d d -Mahler functions at algebraic points.

Funder

H2020 European Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Méthode de Mahler, transcendance et relations linéaires: aspects effectifs;Adamczewski, Boris;J. Th\'{e}or. Nombres Bordeaux,2018

2. Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques;Adamczewski, Boris;Proc. Lond. Math. Soc. (3),2017

3. Boris Adamczewski and Colin Faverjon, Mahler’s method in several variables I. The theory of regular singular systems, preprint, 2018, 65 pp.

4. Exceptional values of 𝐸-functions at algebraic points;Adamczewski, Boris;Bull. Lond. Math. Soc.,2018

5. Solution algebras of differential equations and quasi-homogeneous varieties: a new differential Galois correspondence;André, Yves;Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4),2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Density Theorem for the Difference Galois Groups of Regular Singular Mahler Equations;International Mathematics Research Notices;2021-10-04

2. A Survey on the Hypertranscendence of the Solutions of the Schröder’s, Böttcher’s and Abel’s Equations;Transcendence in Algebra, Combinatorics, Geometry and Number Theory;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3