Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata
-
Published:2023-09-20
Issue:1
Volume:152
Page:137-146
-
ISSN:0002-9939
-
Container-title:Proceedings of the American Mathematical Society
-
language:en
-
Short-container-title:Proc. Amer. Math. Soc.
Author:
Lombardi Luigi,Schnell Christian
Abstract
We prove that a torsion-free sheaf
F
\mathcal {F}
endowed with a singular hermitian metric with semi-positive curvature and satisfying the minimal extension property admits a direct-sum decomposition
F
≃
U
⊕
A
\mathcal {F}\simeq \mathcal {U}\oplus \mathcal {A}
where
U
\mathcal {U}
is a hermitian flat bundle and
A
\mathcal {A}
is a generically ample sheaf. The result applies to the case of direct images of relative pluricanonical bundles
f
∗
ω
X
/
Y
⊗
m
f_* \omega _{X/Y}^{\otimes m}
under a surjective morphism
f
:
X
→
Y
f\colon X \to Y
of smooth projective varieties with
m
≥
2
m\geq 2
. This extends previous results of Fujita, Catanese–Kawamata, and Iwai.
Funder
Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,General Mathematics
Reference19 articles.
1. Slopes of vector bundles on projective curves and applications to tight closure problems;Brenner, Holger;Trans. Amer. Math. Soc.,2004
2. Kodaira dimension of algebraic fiber spaces over abelian varieties;Cao, Junyan;Invent. Math.,2017
3. Answer to a question by Fujita on variation of Hodge structures;Catanese, Fabrizio,2017
4. Fujita decomposition over higher dimensional base;Catanese, Fabrizio;Eur. J. Math.,2019
5. Ample sheaves on moduli schemes;Esnault, Hélène,1991