Viscous conservation laws in 1D with measure initial data

Author:

Bank Miriam,Ben-Artzi Matania,Schonbek Maria

Abstract

The one-dimensional viscous conservation law is considered on the whole line u t + f ( u ) x = ε u x x , ( x , t ) R × R + ¯ , ε > 0 , \begin{equation*} u_t + f(u)_x=\varepsilon u_{xx},\quad (x,t)\in \mathbb {R}\times \overline {\mathbb {R}_{+}},\quad \varepsilon >0, \end{equation*} subject to positive measure initial data.

The flux f C 1 ( R ) f\in C^1(\mathbb {R}) is assumed to satisfy a p p- condition, a weak form of convexity. In particular, any flux of the form f ( u ) = i = 1 J a i u m i f(u)=\sum _{i=1}^Ja_iu^{m_i} is admissible if a i > 0 , m i > 1 , i = 1 , 2 , , J . a_i>0,\,m_i>1,\,\,i=1,2,\ldots ,J.

The only case treated hitherto in the literature is f ( u ) = u m f(u)=u^m [Arch. Rat. Mech. Anal. 124 (1993), pp. 43–65] and the initial data is a “single source”, namely, a multiple of the delta function. The corresponding solutions have been labeled as “source-type” and the treatment made substantial use of the special form of both the flux and the initial data.

In this paper existence and uniqueness of solutions is established. The method of proof relies on sharp decay estimates for the viscous Hamilton-Jacobi equation. Some estimates are independent of the viscosity coefficient, thus leading to new estimates for the (inviscid) hyperbolic conservation law.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference30 articles.

1. Geometric proof of Nash’s inequality;Beckner, William;Internat. Math. Res. Notices,1998

2. Sharp decay estimates and vanishing viscosity for diffusive Hamilton-Jacobi equations;Benachour, Saïd;Adv. Differential Equations,2009

3. Asymptotic profiles of solutions to convection-diffusion equations;Benachour, Saïd;C. R. Math. Acad. Sci. Paris,2004

4. Planar Navier-Stokes equations: vorticity approach;Ben-Artzi, Matania,2003

5. Sharp constant in Nash’s inequality;Carlen, Eric A.;Internat. Math. Res. Notices,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Small-time global null controllability of generalized Burgers’ equations;ESAIM: Control, Optimisation and Calculus of Variations;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3