On a Parabolic-ODE chemotaxis system with periodic asymptotic behavior

Author:

Negreanu M.,Tello J.,Vargas A.

Abstract

We consider a system of differential equations modeling chemotaxis, the habillity of some living organisms to move towards a higher concentration of a chemical signal. The system consists of two differential equations, a parabolic one describing the behavior of a biological species “ u u ” coupled to second equation modeling the concentration of a chemical substance “ v v ”. The growth of the biological species is limited by a logistic-like term where the carrying capacity presents a time-periodic asymptotic behavior. The production of the chemical species is described in terms of a regular function h h , which increases as “ u u ” increases. The system is presented in a regular bounded domain Ω R n \Omega \subset \mathbb {R}^n , with positive constant chemotaxis coefficient χ \chi in the following way { u t = Δ u d i v ( χ u v ) + μ u ( 1 u + f ) , x Ω , t > 0 , ϵ v t D v Δ v = h ( u , v ) , x Ω , t > 0 , \begin{equation*} \begin {cases} u_t = \Delta {u} - div(\chi u \nabla {v}) + \mu u(1-u+f), \quad x\in \Omega , \; t>0, \\[2mm] \epsilon v_t- D_v \Delta v= h(u,v) , \quad x\in \Omega , \; t>0, \end{cases} \end{equation*} with initial data ( u 0 , v 0 ) (u_0, v_0) and appropiate boundary conditions for u u . The function f f , in the reaction term, is a bounded given function fulfilling f ( x , t ) f ( t ) L ( Ω ) 0 ,  as  t , \begin{equation*} \|f(x,t)-f^*(t)\|_{L^{\infty }(\Omega )}\rightarrow 0, \quad \text { as }\quad t\rightarrow \infty , \end{equation*} with f ( t ) f^*(t) being a time-periodic function independent of the space variable “ x x ”.

Three different cases may occur:

If in the equation of v v , the diffusion is dominant in the time scale we are working, then, the system is simplify to a Parabolic-Elliptic equation

If there is not diffusion of v v , the problem is a Parabolic-ODE system.

When diffusion is not dominant and neither neglectable in the time scales we are studying the the problem.

In the chapter we present results of existence of solutions and its asymptotic behavior under suitable assumptions on the initial data for given functions f f and h h .

Publisher

American Mathematical Society

Reference48 articles.

1. An application of the invariance principle to reaction-diffusion equations;Alikakos, Nicholas D.;J. Differential Equations,1979

2. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems;Amann, Herbert;Differential Integral Equations,1990

3. A.R. Anderson and M.A. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull Math Biol., 60 (5), (1998), 857–899.

4. Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics;Bai, Xueli;Indiana Univ. Math. J.,2016

5. Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues;Bellomo, N.;Math. Models Methods Appl. Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3