Continuous closure, axes closure, and natural closure

Author:

Epstein Neil,Hochster Melvin

Abstract

Let R R be a reduced affine C \mathbb {C} -algebra with corresponding affine algebraic set X X . Let C ( X ) \mathcal {C}(X) be the ring of continuous (Euclidean topology) C \mathbb {C} -valued functions on X X . Brenner defined the continuous closure I c o n t I^{\mathrm {cont}} of an ideal I I as I C ( X ) R I\mathcal {C}(X) \cap R . He also introduced an algebraic notion of axes closure I a x I^{\mathrm {ax}} that always contains I c o n t I^{\mathrm {cont}} , and asked whether they coincide. We extend the notion of axes closure to general Noetherian rings, defining f I a x f \in I^{\mathrm {ax}} if its image is in I S IS for every homomorphism R S R \to S , where S S is a one-dimensional complete seminormal local ring. We also introduce the natural closure I I^{\natural } of I I . One of many characterizations is I = I + { f R : n > 0   w i t h   f n I n + 1 } I^{\natural } = I + \{f \in R: \exists n >0 \mathrm {\ with\ } f^n \in I^{n+1}\} . We show that I I a x I^{\natural } \subseteq I^{\mathrm {ax}} and that when continuous closure is defined, I I c o n t I a x I^{\natural } \subseteq I^{\mathrm {cont}} \subseteq I^{\mathrm {ax}} . Under mild hypotheses on the ring, we show that I = I a x I^{\natural } = I^{\mathrm {ax}} when I I is primary to a maximal ideal and that if I I has no embedded primes, then I = I I = I^{\natural } if and only if I = I a x I = I^{\mathrm {ax}} , so that I c o n t I^{\mathrm {cont}} agrees as well. We deduce that in the polynomial ring C [ x 1 , , x n ] \mathbb {C} \lbrack x_1, \ldots , x_n \rbrack , if f = 0 f = 0 at all points where all of the f x i {\partial f \over \partial x_i} are 0, then f ( f x 1 , , f x n ) R f \in ( {\partial f \over \partial x_1}, \, \ldots , \, {\partial f \over \partial x_n})R . We characterize I c o n t I^{\mathrm {cont}} for monomial ideals in polynomial rings over C \mathbb {C} , but we show that the inequalities I I c o n t I^{\natural } \subseteq I^{\mathrm {cont}} and I c o n t I a x I^{\mathrm {cont}} \subseteq I^{\mathrm {ax}} can be strict for monomial ideals even in dimension 3. Thus, I c o n t I^{\mathrm {cont}} and I a x I^{\mathrm {ax}} need not agree, although we prove they are equal in C [ x 1 , x 2 ] \mathbb {C}[x_1, x_2] .

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference29 articles.

1. Sugli omeomorfismi delle varietà algebriche;Andreotti, A.;Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3),1969

2. Localization of tight closure and modules of finite phantom projective dimension;Aberbach, Ian M.;J. Reine Angew. Math.,1993

3. Algebraic approximation of structures over complete local rings;Artin, M.;Inst. Hautes \'{E}tudes Sci. Publ. Math.,1969

4. Seminormalità e singolarità ordinarie;Bombieri, E.,1973

5. [Bre06] Holger Brenner, Continuous solutions to algebraic forcing equations, arXiv:math.AC /0608611v2, 2006.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On C solutions to systems of linear inequalities;Advances in Mathematics;2023-06

2. Smooth selection for infinite sets;Advances in Mathematics;2022-10

3. $C^{m}$ semialgebraic sections over the plane;Journal of the Mathematical Society of Japan;2022-07-22

4. Cm solutions of semialgebraic or definable equations;Advances in Mathematics;2021-07

5. Tight closure and continuous closure;Journal of Algebra;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3