Optimized general sparse grid approximation spaces for operator equations

Author:

Griebel M.,Knapek S.

Abstract

This paper is concerned with the construction of optimized sparse grid approximation spaces for elliptic pseudodifferential operators of arbitrary order. Based on the framework of tensor-product biorthogonal wavelet bases and stable subspace splittings, we construct operator-adapted subspaces with a dimension smaller than that of the standard full grid spaces but which have the same approximation order as the standard full grid spaces, provided that certain additional regularity assumptions on the solution are fulfilled. Specifically for operators of positive order, their dimension is O ( 2 J ) O(2^{J}) independent of the dimension n n of the problem, compared to O ( 2 J n ) O(2^{Jn}) for the full grid space. Also, for operators of negative order the overall cost is significantly in favor of the new approximation spaces. We give cost estimates for the case of continuous linear information. We show these results in a constructive manner by proposing a Galerkin method together with optimal preconditioning. The theory covers elliptic boundary value problems as well as boundary integral equations.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference52 articles.

1. Pure and Applied Mathematics, Vol. 65;Adams, Robert A.,1975

2. Wavelets with boundary conditions on the interval;Auscher, Pascal,1992

3. H.-J. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung, Dissertation, TU München, Institut für Informatik, 1992.

4. H.-J. Bungartz, Finite elements of higher order on sparse grids, Habilitation, TU München, Institut für Informatik, 1998.

5. A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives;Bungartz, Hans-Joachim;J. Complexity,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3