Eigenvalue finite difference approximations for regular and singular Sturm-Liouville problems

Author:

Nassif Nabil R.

Abstract

This paper includes two parts. In the first part, general error estimates for "stable" eigenvalue approximations are obtained. These are practical in the sense that they are based on the discretization error of the difference formula over the eigenspace associated with the isolated eigenvalue under consideration. Verification of these general estimates are carried out on two difference schemes: that of Numerov to solve the Schrödinger singular equation and that of the central difference formula for regular Sturm-Liouville problems. In the second part, a sufficient condition for obtaining a "stable" difference scheme is derived. Such a condition (condition (N) of Theorem 2.1) leads to a simple "by hand" verification, when one selects a difference scheme to compute eigenvalues of a differential operator. This condition is checked for one- and two-dimensional problems.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference14 articles.

1. Rate of convergence estimates for nonselfadjoint eigenvalue approximations;Bramble, J. H.;Math. Comp.,1973

2. F. Chatelin, Théorie de l’Approximation des Opérateurs Linéaires, Application au Calcul des Valeurs Propres d’Opérateurs Différentiels et Intégraux, Lecture Notes, Grenoble University, 1977.

3. Essential numerical range of an operator with respect to a coercive form and the approximation of its spectrum by the Galerkin method;Descloux, Jean;SIAM J. Numer. Anal.,1981

4. J. Descloux, N. R. Nassif & J. Rappaz, "On spectral approximation, Part 1: The problem of convergence; Part 2: Error estimates for the Galerkin method," RAIRO Anal. Numér., v. 12, 1978, pp. 97-112; pp. 113-119.

5. On properties of spectral approximations;Descloux, J.,1979

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3