On quadratic fields with large 3-rank

Author:

Belabas Karim

Abstract

Davenport and Heilbronn defined a bijection between classes of binary cubic forms and classes of cubic fields, which has been used to tabulate the latter. We give a simpler proof of their theorem then analyze and improve the table-building algorithm. It computes the multiplicities of the O ( X ) O(X) general cubic discriminants (real or imaginary) up to X X in time O ( X ) O(X) and space O ( X 3 / 4 ) O(X^{3/4}) , or more generally in time O ( X + X 7 / 4 / M ) O(X + X^{7/4} / M) and space O ( M + X 1 / 2 ) O(M + X^{1/2}) for a freely chosen positive M M . A variant computes the 3 3 -ranks of all quadratic fields of discriminant up to X X with the same time complexity, but using only M + O ( 1 ) M + O(1) units of storage. As an application we obtain the first 1618 1618 real quadratic fields with r 3 ( Δ ) 4 r_3(\Delta ) \geq 4 , and prove that Q ( 5393946914743 ) \mathbb {Q}(\sqrt {-5393946914743}) is the smallest imaginary quadratic field with 3 3 -rank equal to 5 5 .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference31 articles.

1. A fast algorithm to compute cubic fields;Belabas, K.;Math. Comp.,1997

2. On the mean 3-rank of quadratic fields;Belabas, Karim;Compositio Math.,1999

3. M. Bhargava, A simple proof of the Davenport-Heilbronn theorem, 1999, preprint.

4. M. Bhargava, Higher composition laws, Ph.D. thesis, Princeton University, 2001.

5. Graduate Texts in Mathematics;Cohen, Henri,1993

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3