On quasi-Monte Carlo simulation of stochastic differential equations

Author:

Hofmann Norbert,Mathé Peter

Abstract

In a number of problems of mathematical physics and other fields stochastic differential equations are used to model certain phenomena. Often the solution of those problems can be obtained as a functional of the solution of some specific stochastic differential equation. Then we may use the idea of weak approximation to carry out numerical simulation. We analyze some complexity issues for a class of linear stochastic differential equations (Langevin type), which can be given by \[ d X t = α X t d t + β ( t ) d W t , X 0 := 0 , dX_{t}=-\alpha X_{t}dt+\beta (t)dW_{t}, \quad X_{0}:= 0, \] where α > 0 \alpha >0 and β : [ 0 , T ] R \beta : [0,T]\to \mathbb {R} . It turns out that for a class of input data which are not more than Lipschitz continuous the explicit Euler scheme gives rise to an optimal (by order) numerical method. Then we study numerical phenomena which occur when switching from (real) Monte Carlo simulation to quasi–Monte Carlo simulation, which is the case when we carry out the simulation on computers. It will easily be seen that completely uniformly distributed sequences yield good substitutes for random variates, while not all uniformly distributed (mod 1) sequences are suited. In fact we provide necessary conditions on a sequence in order to serve quasi–Monte Carlo purposes. This condition is expressed in terms of the measure of well-distributions. Numerical examples complement the theoretical analysis.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference12 articles.

1. N. N. Chentsov. Pseudo–random numbers for modeling Markov chains. Zh. Vychisl. Mat. i Mat. Fiz., 7:632 – 643, 1967.

2. Deterministic simulation of random processes;Franklin, Joel N.;Math. Comp.,1963

3. Lösung von Integralgleichungen mittels zahlentheoretischer Methoden. I;Hlawka, Edmund;\"{O}sterreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II,1962

4. N. Hofmann. Beiträge zur schwachen Approximation stochastischer Differentialgleichungen. Dissertation, HU Berlin, 1995.

5. Graduate Texts in Mathematics;Karatzas, Ioannis,1988

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3