A numerical scheme based on mean value solutions for the Helmholtz equation on triangular grids

Author:

Andrade M.,do Val J.

Abstract

A numerical treatment for the Dirichlet boundary value problem on regular triangular grids for homogeneous Helmholtz equations is presented, which also applies to the convection-diffusion problems. The main characteristic of the method is that an accuracy estimate is provided in analytical form with a better evaluation than that obtained with the usual finite difference method. Besides, this classical method can be seen as a truncated series approximation to the proposed method. The method is developed from the analytical solutions for the Dirichlet problem on a ball together with an error evaluation of an integral on the corresponding circle, yielding O ( h 4 ) O(h^{4}) accuracy. Some numerical examples are discussed and the results are compared with other methods, with a consistent advantage to the solution obtained here.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference14 articles.

1. Optimal few-point discretizations of linear source problems;Birkhoff, Garrett;SIAM J. Numer. Anal.,1974

2. Computer Science and Applied Mathematics;Davis, Philip J.,1975

3. Discrete weighted mean approximation of a model convection-diffusion equation;Gartland, E. C., Jr.;SIAM J. Sci. Statist. Comput.,1982

4. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Gilbarg, David,1983

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3