Power integral bases in a parametric family of totally real cyclic quintics

Author:

Gaál István,Pohst Michael

Abstract

We consider the totally real cyclic quintic fields K n = Q ( ϑ n ) K_{n}=\mathbb {Q}(\vartheta _{n}) , generated by a root ϑ n \vartheta _{n} of the polynomial f n ( x ) = x 5 + n 2 x 4 ( 2 n 3 + 6 n 2 + 10 n + 10 ) x 3   + ( n 4 + 5 n 3 + 11 n 2 + 15 n + 5 ) x 2 + ( n 3 + 4 n 2 + 10 n + 10 ) x + 1. \begin{multline*} f_{n}(x)=x^{5}+n^{2}x^{4}-(2n^{3}+6n^{2}+10n+10)x^{3}\ +(n^{4}+5n^{3}+11n^{2}+15n+5)x^{2}+(n^{3}+4n^{2}+10n+10)x+1. \end{multline*} Assuming that m = n 4 + 5 n 3 + 15 n 2 + 25 n + 25 m=n^{4}+5n^{3}+15n^{2}+25n+25 is square free, we compute explicitly an integral basis and a set of fundamental units of K n K_{n} and prove that K n K_{n} has a power integral basis only for n = 1 , 2 n=-1,-2 . For n = 1 , 2 n=-1,-2 (both values presenting the same field) all generators of power integral bases are computed.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference11 articles.

1. M.Daberkow, C.Fieker, J.Klüners, M.Pohst, K.Roegner, M.Schörnig & K.Wildanger, Kant V4, J. Symbolic Comp., to appear..

2. Note on a polynomial of Emma Lehmer;Darmon, Henri;Math. Comp.,1991

3. Computing all power integral bases in orders of totally real cyclic sextic number fields;Gaál, István;Math. Comp.,1996

4. Simultaneous representation of integers by a pair of ternary quadratic forms—with an application to index form equations in quartic number fields;Gaál, István;J. Number Theory,1996

5. I.Gaál & M.Pohst, On the resolution of index form equations in sextic fields with an imaginary subfield, J.Symbolic Comp., to appear.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normal integral bases of Lehmer’s cyclic quintic fields;The Ramanujan Journal;2024-07-05

2. On the indices in number fields and their computation for small degrees;Applicable Analysis and Discrete Mathematics;2021

3. Quintic Fields;Diophantine Equations and Power Integral Bases;2019

4. Non-monogenity in a family of octic fields;Rocky Mountain Journal of Mathematics;2017-06-01

5. Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields;Czechoslovak Mathematical Journal;2014-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3