The rate of convergence of Hermite function series

Author:

Boyd John P.

Abstract

Let α > 0 \alpha > 0 be the least upper bound of γ \gamma for which \[ f ( z ) O ( e q | z | γ ) f(z) \sim O({e^{ - q|z|\gamma }}) \] for some positive constant q as | z | |z| \to \infty on the real axis. It is then proved that at least an infinite subsequence of the coefficients { a n } \{ {a_n}\} in \[ f ( z ) = e z 2 / 2 n = 0 a n H n ( z ) , f(z) = {e^{ - {z^2}/2}}\sum \limits _{n = 0}^\infty {{a_n}{H_n}(z),} \] where the H n {H_n} are the normalized Hermite polynomials, must satisfy certain lower bounds. The theorems show two striking facts. First, the convergence rate of a Hermite series depends not only upon the order ρ \rho for an entire function or the location of the nearest singularity for a singular function as for a power series but also upon α \alpha , thus making the convergence theory of Hermitian series more complicated (and interesting) than that for any ordinary Taylor expansion. Second, the poorer the match between the asymptotic behavior of f ( z ) f(z) and exp ( 1 / 2 z 2 ) \exp (-1/2 z^2) the poorer the convergence of the Hermite series will be.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference8 articles.

1. M. ABRAMOWITZ & I. A. STEGUN, Eds., Handbook of Mathematical Functions, Dover, New York, 1965. MR 29 #4914.

2. J. P. BOYD, "Hermite polynomial methods for obtaining analytical and numerical solutions to eigenvalue problems in unbounded and spherical geometry," J. Comput. Phys. (Submitted.)

3. Contributions to the theory of Hermitian series;Hille, Einar;Duke Math. J.,1939

4. Contributions to the theory of Hermitian series. II. The representation problem;Hille, Einar;Trans. Amer. Math. Soc.,1940

5. A class of differential operators of infinite order, I;Hille, Einar;Duke Math. J.,1940

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3