On faster convergence of the bisection method for all triangles

Author:

Stynes Martin

Abstract

Let Δ A B C \Delta ABC be a triangle with vertices A, B, and C. It is "bisected" as follows: choose a/the longest side (say AB) of Δ A B C \Delta ABC , let D be the midpoint of AB, then replace Δ A B C \Delta ABC by two triangles Δ A D C \Delta ADC and Δ D B C \Delta DBC . Let Δ 01 {\Delta _{01}} be a given triangle. Bisect Δ 01 {\Delta _{01}} into two triangles Δ 11 {\Delta _{11}} and Δ 12 {\Delta _{12}} . Next bisect each Δ 1 i , i = 1 , 2 {\Delta _{1i}},\;i = 1,2 , forming four new triangles Δ 2 i , i = 1 , 2 , 3 , 4 {\Delta _{2i}},\;i = 1,2,3,4 . Continue thus, forming an infinite sequence T j , j = 0 , 1 , 2 , {T_j},\;j = 0,1,2, \ldots , of sets of triangles, where T j = { Δ j i : 1 i 2 j } {T_j} = \left \{ {{\Delta _{ji}}:1 \leqslant i \leqslant {2^j}} \right \} . Let m j {m_j} denote the mesh of T j {T_j} . It is shown that there exists N = N ( Δ 01 ) N = N({\Delta _{01}}) such that, for j N j \geqslant N , m 2 j ( 3 / 2 ) N ( 1 / 2 ) j N m 0 {m_{2j}} \leqslant {(\sqrt 3 /2)^N}{(1/2)^{j - N}}{m_0} , thus greatly improving the previous best known bound of m 2 j ( 3 / 2 ) j m 0 {m_{2j}} \leqslant {(\sqrt 3 /2)^j}{m_0} . It is also shown that only a finite number of distinct shapes occur among the triangles produced, and that, as the method proceeds, Δ 01 {\Delta _{01}} tends to become covered by triangles which are approximately equilateral in a certain sense.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference5 articles.

1. A proof of convergence and an error bound for the method of bisection in 𝑅ⁿ;Kearfott, Baker;Math. Comp.,1978

2. A lower bound on the angles of triangles constructed by bisecting the longest side;Rosenberg, Ivo G.;Math. Comp.,1975

3. On faster convergence of the bisection method for certain triangles;Stynes, Martin;Math. Comp.,1979

4. M. STYNES, "Why Stenger’s topological degree algorithm usually works in 𝑅³." (In preparation.)

5. On 𝐶¹-complexes;Whitehead, J. H. C.;Ann. of Math. (2),1940

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Maximum Angle Estimate for Longest-Edge Bisection;International Journal of Computational Geometry & Applications;2021-12

2. Terminal Triangles Centroid Algorithms for Quality Delaunay Triangulation;Computer-Aided Design;2020-08

3. Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation;Lecture Notes in Computational Science and Engineering;2019

4. Longest-edgen-section algorithms: Properties and open problems;Journal of Computational and Applied Mathematics;2016-02

5. A mathematical proof of how fast the diameters of a triangle mesh tend to zero after repeated trisection;Mathematics and Computers in Simulation;2014-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3