Computing the degree of the modular parametrization of a modular elliptic curve

Author:

Cremona J. E.

Abstract

The Weil-Taniyama conjecture states that every elliptic curve E / Q E/\mathbb {Q} of conductor N can be parametrized by modular functions for the congruence subgroup Γ 0 ( N ) {\Gamma _0}(N) of the modular group Γ = P S L ( 2 , Z ) \Gamma = PSL(2,\mathbb {Z}) . Equivalently, there is a nonconstant map φ \varphi from the modular curve X 0 ( N ) {X_0}(N) to E. We present here a method of computing the degree of such a map φ \varphi for arbitrary N. Our method, which works for all subgroups of finite index in Γ \Gamma and not just Γ 0 ( N ) {\Gamma _0}(N) , is derived from a method of Zagier published in 1985; by using those ideas, together with techniques which have recently been used by the author to compute large tables of modular elliptic curves, we are able to derive an explicit and general formula which is simpler to implement than Zagier’s. We discuss the results obtained, including a table of degrees for all the modular elliptic curves of conductors up to 200.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference5 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. -adic images of Galois for elliptic curves over (and an appendix with John Voight);Forum of Mathematics, Sigma;2022

2. Honda–Kaneko congruences and the Mazur–Tate p-adic σ-function;Journal of Number Theory;2020-01

3. On the weak forms of the 2-part of Birch and Swinnerton-Dyer conjecture;Mathematical Proceedings of the Cambridge Philosophical Society;2018-09-05

4. Weierstrass mock modular forms and elliptic curves;Research in Number Theory;2015-12

5. On zeros of Eichler integrals;Archiv der Mathematik;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3