Spectral method on quadrilaterals
Author:
Abstract
In this paper, we investigate the spectral method on quadrilaterals. We introduce an orthogonal family of functions induced by Legendre polynomials, and establish some results on the corresponding orthogonal approximation. These results play important roles in the spectral method for partial differential equations defined on quadrilaterals. As examples of applications, we provide spectral schemes for two model problems and prove their spectral accuracy in Jacobi weighted Sobolev space. Numerical results coincide well with the analysis. We also investigate the spectral method on convex polygons whose solutions possess spectral accuracy. The approximation results of this paper are also applicable to other problems.
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,Computational Mathematics,Algebra and Number Theory
Link
http://www.ams.org/mcom/2010-79-272/S0025-5718-10-02329-X/S0025-5718-10-02329-X.pdf
Reference19 articles.
1. Spectral methods;Bernardi, Christine,1997
2. Math\'{e}matiques \& Applications (Berlin) [Mathematics \& Applications];Bernardi, Christine,2004
3. Scientific Computation;Canuto, C.,2006
4. Scientific Computation;Canuto, C.,2007
Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A multi-domain spectral-Galerkin method for the Neumann problem on quadrilaterals;Computers & Mathematics with Applications;2024-02
2. High-order numerical method and error analysis based on a mixed scheme for fourth-order problem in a ball;Discrete and Continuous Dynamical Systems - B;2024
3. Efficient Spectral Galerkin Approximation for Second Order Elliptic Boundary ValueProblems with Variable Coefficient on Arbitrary Convex Quadrilateral Domain;Advances in Applied Mathematics;2024
4. A novel spectral method and error estimates for fourth-order problems with mixed boundary conditions in a cylindrical domain;Computers & Mathematics with Applications;2023-12
5. An Efficient Legendre–Galerkin Approximation for Fourth-Order Elliptic Problems with SSP Boundary Conditions and Variable Coefficients;Mathematics;2023-05-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3