Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms

Author:

Chalabi A.

Abstract

We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. The convergence of the approximate solution toward a weak solution is established in the cases of first and second order accurate MUSCL relaxed methods.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference32 articles.

1. D. Aregba-Driollet and R. Natalini, Convergence of relaxation schemes for conservation laws, Appl. Anal. 61 (1996), 163–193.

2. A. C. Berkenbosch, E. F. Kaasschieter, and J. H. M. Ten Thije Boonkkamp, The numerical wave speed for one-dimensional scalar conservation laws with source terms. Preprint, Eindhoven University of Technology, (1994).

3. Upwind methods for hyperbolic conservation laws with source terms;Bermudez, Alfredo;Comput. \& Fluids,1994

4. Stable upwind schemes for hyperbolic conservation laws with source terms;Chalabi, A.;IMA J. Numer. Anal.,1992

5. An error bound for the polygonal approximation of conservation laws with source terms;Chalabi, A.;Comput. Math. Appl.,1996

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-order reduction for hyperbolic relaxation systems;International Journal of Nonlinear Sciences and Numerical Simulation;2022-01-06

2. Finite Volume Schemes for One-Dimensional Systems;Applied Mathematical Sciences;2020-12-14

3. Method of relaxed streamline upwinding for hyperbolic conservation laws;Wave Motion;2018-04

4. On the Relaxation Approximation for $$2\times 2$$ Hyperbolic Balance Laws;Theory, Numerics and Applications of Hyperbolic Problems I;2018

5. High-resolution numerical relaxation approximations to second-order macroscopic traffic flow models;Transportation Research Part C: Emerging Technologies;2014-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3