On perturbations of matrix pencils with real spectra

Author:

Li Ren Cang

Abstract

Perturbation bounds for the generalized eigenvalue problem of a diagonalizable matrix pencil A λ B A - \lambda B with real spectrum are developed. It is shown how the chordal distances between the generalized eigenvalues and the angular distances between the generalized eigenspaces can be bounded in terms of the angular distances between the matrices. The applications of these bounds to the spectral variations of definite pencils are conducted in such a way that extra attention is paid to their peculiarities so as to derive more sophisticated perturbation bounds. Our results for generalized eigenvalues are counterparts of some celebrated theorems for the spectral variations of Hermitian matrices such as the Weyl-Lidskii theorem and the Hoffman-Wielandt theorem; and those for generalized eigenspaces are counterparts of the celebrated Davis-Kahan sin θ , sin 2 θ \sin \theta ,\sin 2\theta theorems for the eigenspace variations of Hermitian matrices. The paper consists of two parts. Part I is for generalized eigenvalue perturbations, while Part II deals with generalized eigenspace perturbations.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference32 articles.

1. A bound for the spectral variation of a unitary operator;Bhatia, Rajendra;Linear and Multilinear Algebra,1984

2. Perturbation of spectral subspaces and solution of linear operator equations;Bhatia, Rajendra;Linear Algebra Appl.,1983

3. A stable generalized eigenvalue problem;Crawford, C. R.;SIAM J. Numer. Anal.,1976

4. The rotation of eigenvectors by a perturbation. III;Davis, Chandler;SIAM J. Numer. Anal.,1970

5. The spectral variation of pencils of matrices;Elsner, L.;J. Comput. Math.,1985

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3