Analysis of PSLQ, an integer relation finding algorithm

Author:

Ferguson Helaman,Bailey David,Arno Steve

Abstract

Let K {\mathbb {K}} be either the real, complex, or quaternion number system and let O ( K ) {\mathbb {O}}({\mathbb {K}}) be the corresponding integers. Let x = ( x 1 , , x n ) x = (x_{1}, \dots , x_{n}) be a vector in K n {\mathbb {K}}^{n} . The vector x x has an integer relation if there exists a vector m = ( m 1 , , m n ) O ( K ) n m = (m_{1}, \dots , m_{n}) \in {\mathbb {O}}({\mathbb {K}})^{n} , m 0 m \ne 0 , such that m 1 x 1 + m 2 x 2 + + m n x n = 0 m_{1} x_{1} + m_{2} x_{2} + \ldots + m_{n} x_{n} = 0 . In this paper we define the parameterized integer relation construction algorithm PSLQ ( τ ) (\tau ) , where the parameter τ \tau can be freely chosen in a certain interval. Beginning with an arbitrary vector x = ( x 1 , , x n ) K n x = (x_{1}, \dots , x_{n}) \in {\mathbb {K}}^{n} , iterations of PSLQ ( τ ) (\tau ) will produce lower bounds on the norm of any possible relation for x x . Thus PSLQ ( τ ) (\tau ) can be used to prove that there are no relations for x x of norm less than a given size. Let M x M_{x} be the smallest norm of any relation for x x . For the real and complex case and each fixed parameter τ \tau in a certain interval, we prove that PSLQ ( τ ) (\tau ) constructs a relation in less than O ( n 3 + n 2 log M x ) O(n^{3} + n^{2} \log M_{x}) iterations.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference38 articles.

1. Steve Arno and Helaman Ferguson, A new polynomial time algorithm for finding relations among real numbers, Supercomputing Research Center Tech Report SRC-93-093 (March 1993), 1–13.

2. D. H. Bailey and H. R. P. Ferguson, A polynomial time, numerically stable integer relation algorithm, SRC Technical Report SRC-TR-92-066; RNR Technical Report RNR-91-032 (16 December 1991; 14 July 1992), 1–14.

3. Experimental evaluation of Euler sums;Bailey, David H.;Experiment. Math.,1994

4. D. H. Bailey, P. Borwein, and S. Plouffe, On the rapid computation of various polylogarithmic constants, Mathematics of Computation 66 (218) (April 1997), 903 – 913.

5. Numerical results on the transcendence of constants involving 𝜋,𝑒, and Euler’s constant;Bailey, David H.;Math. Comp.,1988

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3