The classification of minimal product-quotient surfaces with 𝑝_{𝑔}=0

Author:

Bauer I.,Pignatelli R.

Abstract

A product-quotient surface is the minimal resolution of the singularities of the quotient of a product of two curves by the action of a finite group acting separately on the two factors. We classify all minimal product-quotient surfaces of general type with geometric genus 0: they form 72 families. We show that there is exactly one product-quotient surface of general type whose canonical class has positive selfintersection which is not minimal, and describe its ( 1 ) (-1) -curves. For all of these surfaces the Bloch conjecture holds.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference25 articles.

1. On the fundamental group of an orbit space;Armstrong, M. A.;Proc. Cambridge Philos. Soc.,1965

2. The fundamental group of the orbit space of a discontinuous group;Armstrong, M. A.;Proc. Cambridge Philos. Soc.,1968

3. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];Barth, W.,1984

4. [BC04] Bauer I., Catanese F., Some new surfaces with 𝑝_{𝑔}=𝑞=0, The Fano Conference, 123–142, Univ. Torino, Turin, 2004.

5. The classification of surfaces with 𝑝_{𝑔}=𝑞=0 isogenous to a product of curves;Bauer, I. C.;Pure Appl. Math. Q.,2008

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological types of actions on curves;Journal of Symbolic Computation;2023-09

2. Examples of surfaces with canonical maps of degree 12, 13, 15, 16 and 18;Annali di Matematica Pura ed Applicata (1923 -);2023-08-01

3. Some surfaces with canonical map of degree 4;Portugaliae Mathematica;2023-06-20

4. Bogomolov's inequality for product type varieties in positive characteristic;Journal of the Mathematical Society of Japan;2023-01-25

5. The complex ball-quotient structure of the moduli space of certain sextic curves;Journal of the Mathematical Society of Japan;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3