Minimality and other properties of the width-𝑤 nonadjacent form

Author:

Muir James,Stinson Douglas

Abstract

Let w 2 w \geq 2 be an integer and let D w D_w be the set of integers that includes zero and the odd integers with absolute value less than 2 w 1 2^{w-1} . Every integer n n can be represented as a finite sum of the form n = a i 2 i n = \sum a_i 2^i , with a i D w a_i \in D_w , such that of any w w consecutive a i a_i ’s at most one is nonzero. Such representations are called width- w w nonadjacent forms ( w w -NAFs). When w = 2 w=2 these representations use the digits { 0 , ± 1 } \{0,\pm 1\} and coincide with the well-known nonadjacent forms. Width- w w nonadjacent forms are useful in efficiently implementing elliptic curve arithmetic for cryptographic applications. We provide some new results on the w w -NAF. We show that w w -NAFs have a minimal number of nonzero digits and we also give a new characterization of the w w -NAF in terms of a (right-to-left) lexicographical ordering. We also generalize a result on w w -NAFs and show that any base 2 representation of an integer, with digits in D w D_w , that has a minimal number of nonzero digits is at most one digit longer than its binary representation.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference16 articles.

1. R. M. Avanzi. A Note on the Sliding Window Integer Recoding and its Left-to-Right Analogue, to appear in “Workshop on Selected Areas in Cryptography – SAC 2004”.

2. London Mathematical Society Lecture Note Series;Blake, I. F.,2000

3. S. H. Chang and N. Tsao-Wu. Distance and Structure of Cyclic Arithmetic Codes, in “Proceedings of the Hawaii International Conference on System Sciences” (1968), 463–466.

4. H. Cohen. Analysis of the Flexible Window Powering Algorithm, Preprint. Available from \url{http://www.math.u-bordeaux.fr/ cohen/window.dvi}.

5. Efficient elliptic curve exponentiation using mixed coordinates;Cohen, Henri,1998

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3