Difference methods for nonlinear first-order hyperbolic systems of equations

Author:

Shampine L. F.,Thompson R. J.

Abstract

Two difference methods for approximating some first-order nonlinear hyperbolic differential equations are considered. The methods apply to problems arising in a number of physical applications. Each of the methods is explicit and can be implemented on a computer easily. It is proved that the methods are first-order convergent in the maximum norm. For one of the methods in order to obtain convergence it is necessary to monitor, and perhaps change, the size of the time step as the computation proceeds. The other method is unconditionally convergent.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference9 articles.

1. D. M. Koenig, "Invariant imbedding: new design method in unit operations," Chem. Engrg., v. 74, no. 19, 1967, pp. 181–184.

2. On a general theory of characteristics and the method of invariant imbedding;Meyer, G. H.;SIAM J. Appl. Math.,1968

3. On the solution of nonlinear hyperbolic differential equations by finite differences;Courant, Richard;Comm. Pure Appl. Math.,1952

4. Applied Mathematics Series;Forsythe, George E.,1960

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A stabilization technique for coupled convection-diffusion-reaction equations;International Journal for Numerical Methods in Engineering;2018-07-25

2. Invariant imbedding and the continuation method: a comparison†;International Journal of Systems Science;1975-03

3. INVARIANT IMBEDDING FOR FIXED AND FREE TWO POINT BOUNDARY VALUE PROBLEMS;Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations;1975

4. ON THE CONVERSION OF BOUNDARY-VALUE PROBLEMS INTO STABLE INITIAL-VALUE PROBLEMS VIA SEVERAL INVARIANT IMBEDDING ALGORITHMS**Work supported by the U. S. Atomic Energy Commission;Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations;1975

5. A comparison of several invariant imbedding algorithms for the solution of two-point boundary-value problems;Applied Mathematics and Computation;1975-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3