On the solution of systems of equations by the epsilon algorithm of Wynn

Author:

Gekeler E.

Abstract

The ϵ \epsilon -algorithm has been proposed by Wynn on a number of occasions as a convergence acceleration device for vector sequences; however, little is known concerning its effect upon systems of equations. In this paper, we prove that the algorithm applied to the Picard sequence x i + 1 = F ( x i ) {{\text {x}}_{i + 1}} = F({{\text {x}}_i}) of an analytic function F : R n D R n F:{{\text {R}}^n} \supset D \to {{\text {R}}^n} provides a quadratically convergent iterative method; furthermore, no differentiation of F F is needed. Some examples illustrate the numerical performance of this method and show that convergence can be obtained even when F F is not contractive near the fixed point. A modification of the method is discussed and illustrated.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference24 articles.

1. A. C. Aitken, “On Bernoulli’s numerical solution of algebraic equations,” Proc. Roy. Soc. Edinburgh Sect. A, v. 46, 1926, pp. 289-305.

2. Application de l’𝜖-algorithme à la résolution des systèmes non linéaires;Brezinski, Claude;C. R. Acad. Sci. Paris S\'{e}r. A-B,1970

3. Pure and Applied Mathematics, Vol. X;Dieudonné, J.,1960

4. Über den 𝜖-Algorithmus von Wynn;Gekeler, E.;Z. Angew. Math. Mech.,1971

5. T. N. E. Greville, On Some Conjectures of P. Wynn Concerning the 𝜀-Algorithm, University of Wisconsin Math. Res. Center Report #877, 1968.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extrapolation methods as nonlinear Krylov subspace methods;Linear Algebra and its Applications;2023-04

2. Shanks and Anderson-type acceleration techniques for systems of nonlinear equations;IMA Journal of Numerical Analysis;2021-08-25

3. Commentaries and Further Developments;Extrapolation and Rational Approximation;2020

4. The Works of Peter Wynn;Extrapolation and Rational Approximation;2020

5. A convergence study for reduced rank extrapolation on nonlinear systems;Numerical Algorithms;2019-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3