Divisors in residue classes

Author:

Lenstra H. W.

Abstract

In this paper the following result is proved. Let r, s and n be integers satisfying 0 r > s > n 0 \leqslant r > s > n , s > n 1 / 3 s > {n^{1/3}} , gcd ( r , s ) = 1 \gcd (r,s) = 1 . Then there exist at most 11 positive divisors of n that are congruent to r modulo s. Moreover, there exists an efficient algorithm for determining all these divisors. The bound 11 is obtained by means of a combinatorial model related to coding theory. It is not known whether 11 is best possible; in any case it cannot be replaced by 5. Nor is it known whether similar results are true for significantly smaller values of log s / log n \log s/\log n . The algorithm treated in the paper has applications in computational number theory.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference9 articles.

1. Square rooting is as difficult as multiplication;Alt, H.;Computing,1978

2. New primality criteria and factorizations of 2^{𝑚}±1;Brillhart, John;Math. Comp.,1975

3. Primality testing and Jacobi sums;Cohen, H.;Math. Comp.,1984

4. Addison-Wesley Series in Computer Science and Information Processing;Knuth, Donald E.,1981

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Egyptian fractions of bounded length;Research in Number Theory;2024-01-22

2. Deterministic factoring with oracles;Applicable Algebra in Engineering, Communication and Computing;2021-09-16

3. On the diophantine equation $$ax^{3} + by + c = xyz$$ a x 3 + b y + c = x y z;Afrika Matematika;2016-04-05

4. A deterministic algorithm for integer factorization;Mathematics of Computation;2015-10-20

5. On the diophantine equation $ax^{3} + by + c = xyz$;Functiones et Approximatio Commentarii Mathematici;2015-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3