An efficient algorithm for second-order cone linear complementarity problems

Author:

Zhang Lei-Hong,Yang Wei Hong

Abstract

Recently, the globally uniquely solvable (GUS) property of the linear transformation M R n × n M\in \mathbb {R}^{n\times n} in the second-order cone linear complementarity problem (SOCLCP) receives much attention and has been studied substantially. Yang and Yuan contributed a new characterization of the GUS property of the linear transformation, which is formulated by basic linear-algebra-related properties. In this paper, we consider efficient numerical algorithms to solve the SOCLCP where the linear transformation M M has the GUS property. By closely relying on the new characterization of the GUS property, a globally convergent bisection method is developed in which each iteration can be implemented using only 2 n 2 2n^2 flops. Moreover, we also propose an efficient Newton method to accelerate the bisection algorithm. An attractive feature of this Newton method is that each iteration only requires 5 n 2 5n^2 flops and converges quadratically. These two approaches make good use of the special structure contained in the SOCLCP and can be effectively combined to yield a fast and efficient bisection-Newton method. Numerical testing is carried out and very encouraging computational experiments are reported.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3