On beta expansions for Pisot numbers

Author:

Boyd David

Abstract

Given a number β > 1 \beta > 1 , the beta-transformation T = T β T =T_{\beta } is defined for x [ 0 , 1 ] x \in [0,1] by T x := β x Tx := \beta x (mod 1). The number β \beta is said to be a beta-number if the orbit { T n ( 1 ) } \{T^{n}(1)\} is finite, hence eventually periodic. In this case β \beta is the root of a monic polynomial R ( x ) R(x) with integer coefficients called the characteristic polynomial of β \beta . If P ( x ) P(x) is the minimal polynomial of β \beta , then R ( x ) = P ( x ) Q ( x ) R(x) = P(x)Q(x) for some polynomial Q ( x ) Q(x) . It is the factor Q ( x ) Q(x) which concerns us here in case β \beta is a Pisot number. It is known that all Pisot numbers are beta-numbers, and it has often been asked whether Q ( x ) Q(x) must be cyclotomic in this case, particularly if 1 > β > 2 1 > \beta > 2 . We answer this question in the negative by an examination of the regular Pisot numbers associated with the smallest 8 limit points of the Pisot numbers, by an exhaustive enumeration of the irregular Pisot numbers in [ 1 , 1.9324 ] [ 1.9333 , 1.96 ] [1,1.9324]\cup [1.9333,1.96] (an infinite set), by a search up to degree 50 50 in [ 1.9 , 2 ] [1.9,2] , to degree 60 60 in [ 1.96 , 2 ] [1.96,2] , and to degree 20 20 in [ 2 , 2.2 ] [2,2.2] . We find the smallest counterexample, the counterexample of smallest degree, examples where Q ( x ) Q(x) is nonreciprocal, and examples where Q ( x ) Q(x) is reciprocal but noncyclotomic. We produce infinite sequences of these two types which converge to 2 2 from above, and infinite sequences of β \beta with Q ( x ) Q(x) nonreciprocal which converge to 2 2 from below and to the 6 6 th smallest limit point of the Pisot numbers from both sides. We conjecture that these are the only limit points of such numbers in [ 1 , 2 ] [1,2] . The Pisot numbers for which Q ( x ) Q(x) is cyclotomic are related to an interesting closed set of numbers F \mathcal {F} introduced by Flatto, Lagarias and Poonen in connection with the zeta function of T T . Our examples show that the set S S of Pisot numbers is not a subset of F \mathcal {F} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference26 articles.

1. Ensembles fermés de nombres algébriques;Amara, Mohamed;Ann. Sci. \'{E}cole Norm. Sup. (3),1966

2. Computability by finite automata and Pisot bases;Berend, Daniel;Math. Systems Theory,1994

3. Pisot and Salem Numbers

4. Développements en base de Pisot et répartition modulo 1;Bertrand, Anne;C. R. Acad. Sci. Paris S\'{e}r. A-B,1977

5. Développement en base 𝜃; répartition modulo un de la suite (𝑥𝜃ⁿ)_{𝑛≥0}; langages codés et 𝜃-shift;Bertrand-Mathis, Anne;Bull. Soc. Math. France,1986

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Complex Pisot Numbers That Are Roots of Borwein Trinomials;Mathematics;2024-04-09

2. Linear recurrent cryptography: Golden-like cryptography for higher order linear recurrences;Discrete Mathematics, Algorithms and Applications;2022-05-05

3. Number of digit changes in $${\beta}$$ β -expansion of unity in $${\mathbb{F}_{q}((x^{-1}))}$$ F q ( ( x - 1 ) );Acta Mathematica Hungarica;2015-02-24

4. Bibliography;Formal Languages, Automata and Numeration Systems 2;2014-09-12

5. Bibliography;Formal Languages, Automata and Numeration Systems 1;2014-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3