The reduction of an arbitrary real square matrix to tridiagonal form using similarity transformations
Author:
Abstract
In this paper a new algorithm for reducing an arbitrary real square matrix to tri-diagonal form using real similarity transformations is described. The method is essentially a generalization of a method due to A. S. Householder for accomplishing the same reduction in the case where the matrix is real and symmetric.
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics,Computational Mathematics,Algebra and Number Theory
Link
http://www.ams.org/mcom/1963-17-084/S0025-5718-1963-0156455-9/S0025-5718-1963-0156455-9.pdf
Reference7 articles.
1. NUMERICAL COMPUTATION OF THE CHARACTERISTIC VALUES OF A REAL SYMMETRIC MATRIX
2. Computation of plane unitary rotations transforming a general matrix to triangular form;Givens, Wallace;J. Soc. Indust. Appl. Math.,1958
3. On certain methods for expanding the characteristic polynomial;Householder, Alston S.;Numer. Math.,1959
4. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators;Lanczos, Cornelius;J. Research Nat. Bur. Standards,1950
5. Critère de stabilité pour des systèmes d’équations différentielles à coefficients constants complexes;Schwarz, Hans Rudolf;C. R. Acad. Sci. Paris,1956
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Spectral Properties and Optimality for Elementary Matrices;Journal of the Operations Research Society of China;2017-10-28
2. A short note on a generalization of the Givens transformation;Computers & Mathematics with Applications;2013-08
3. QRT: A QR-Based Tridiagonalization Algorithm for Nonsymmetric Matrices;SIAM Journal on Matrix Analysis and Applications;2005-01
4. Toward an efficient and stable determination of spectra of a general matrix and a more efficient solution of the Lyapunov equation;World Congress of Nonlinear Analysts '92;1996-12-31
5. A Finite Procedure for the Tridiagonalization of a General Matrix;SIAM Journal on Matrix Analysis and Applications;1995-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3