Continuous-time Kreiss resolvent condition on infinite-dimensional spaces

Author:

Eisner Tatjana,Zwart Hans

Abstract

Given the infinitesimal generator A A of a C 0 C_0 -semigroup on the Banach space X X which satisfies the Kreiss resolvent condition, i.e., there exists an M > 0 M>0 such that ( s I A ) 1 M R e ( s ) \| (sI-A)^{-1}\| \leq \frac {M}{\mathrm {Re}(s)} for all complex s s with positive real part, we show that for general Banach spaces this condition does not give any information on the growth of the associated C 0 C_0 -semigroup. For Hilbert spaces the situation is less dramatic. In particular, we show that the semigroup can grow at most like t t . Furthermore, we show that for every γ ( 0 , 1 ) \gamma \in (0,1) there exists an infinitesimal generator satisfying the Kreiss resolvent condition, but whose semigroup grows at least like t γ t^\gamma . As a consequence, we find that for R N {\mathbb R}^N with the standard Euclidian norm the estimate exp ( A t ) M 1 min ( N , t ) \|\exp (At)\| \leq M_1 \min (N,t) cannot be replaced by a lower power of N N or t t .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference20 articles.

1. Conformal transformations of dissipative operators;Aupetit, Bernard;Math. Proc. R. Ir. Acad.,1999

2. Resolvent tests for similarity to a normal operator;Benamara, Nour-Eddine;Proc. London Math. Soc. (3),1999

3. Bounding partial sums of Fourier series in weighted 𝐿²-norms, with applications to matrix analysis;Borovykh, N.;J. Comput. Appl. Math.,2002

4. Operators similar to unitary or selfadjoint ones;van Casteren, Jan A.;Pacific J. Math.,1983

5. Texts in Applied Mathematics;Curtain, Ruth F.,1995

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3