Parameters for integrating periodic functions of several variables

Author:

Haber Seymour

Abstract

A number-theoretical method for numerical integration of periodic functions of several variables was developed some years ago. This paper presents lists of numerical parameters to be used in implementing that method. The parameters define quadrature formulas for functions of 2, 3, ..., 8 variables; error bounds for those formulas are also tabulated. The derivation of the parameters and error bounds is described.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference23 articles.

1. Approximate computation of multiple integrals;Bahvalov, N. S.;Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him.,1959

2. F. Benford, "The law of anomalous numbers," Proc. Amer. Philos. Soc., v. 78, 1938, pp. 551-572.

3. R. I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek & J. H. Schaibly, "Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients I. Theory," J. Chem. Phys., v. 59, 1973, pp. 3873-3878.

4. Numerical integration techniques for quantum chemistry. The role of periodization in the calculation of electronic integrals;Daudey, J. P.;Theoret. Chim. Acta,1975

5. Numerical evaluation of multiple integrals;Haber, Seymour;SIAM Rev.,1970

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Lattice Rules for Multidimensional Sensitivity Analysis in Air Pollution Modelling;Springer Proceedings in Mathematics & Statistics;2023

2. A study of highly efficient stochastic sequences for multidimensional sensitivity analysis;Monte Carlo Methods and Applications;2022-02-15

3. Advanced stochastic approaches for Sobol’ sensitivity indices evaluation;Neural Computing and Applications;2020-06-21

4. Ian Sloan and Lattice Rules;Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan;2018

5. Interpolation lattices for hyperbolic cross trigonometric polynomials;Journal of Complexity;2012-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3