Comparison of algorithms for multivariate rational approximation

Author:

Henry Jackson N.

Abstract

Let F be a continuous real-valued function defined on the unit square [ 1 , 1 ] × [ 1 , 1 ] [ - 1,1] \times [ - 1,1] . When developing the rational product approximation to F, a certain type of discontinuity may arise. We develop a variation of a known technique to overcome this discontinuity so that the approximation can be programmed. Rational product approximations to F have been computed using both the second algorithm of Remez and the differential correction algorithm. A discussion of the differences in errors and computing time for each of these algorithms is presented and compared with the surface fit approximation also obtained using the differential correction algorithm.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference8 articles.

1. Best Chebyshev composite approximation;Brown, J. A.;SIAM J. Numer. Anal.,1975

2. Computation of rational product approximations;Henry, Jackson N.;Internat. J. Numer. Methods Engrg.,1976

3. Best rational product approximations of functions;Henry, M. S.;J. Approximation Theory,1973

4. Best rational product approximations of functions;Henry, M. S.;J. Approximation Theory,1973

5. An application of linear programming to rational approximation;Kaufman, E. H., Jr.;Rocky Mountain J. Math.,1974

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uniform Approximation of Functions of Two Variables;Cybernetics and Systems Analysis;2017-05

2. A catalogue of algorithms for approximation;Algorithms for Approximation II;1990

3. Error bounds for polynomial product approximation;Journal of Approximation Theory;1981-01

4. Gestufte Approximation in Zwei Variablen;Numerische Methoden der Approximationstheorie / Numerical Methods of Approximation Theory;1980

5. Approximation in a Banach space defined by a continuous field of Banach spaces;Journal of Approximation Theory;1979-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3