A stability analysis for perturbed nonlinear iterative methods

Author:

Boggs Paul T.,Dennis J. E.

Abstract

This paper applies the asymptotic stability theory for ordinary differential equations to Gavurin’s continuous analogue of several well-known nonlinear iterative methods. In particular, a general theory is developed which extends the Ortega-Rheinboldt concept of consistency to include the widely used finite-difference approximations to the gradient as well as the finite-difference approximations to the Jacobian in Newton’s method. The theory is also shown to be applicable to the Levenberg-Marquardt and finite-difference Levenberg-Marquardt methods.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference20 articles.

1. The solution of nonlinear systems of equations by 𝐴-stable integration techniques;Boggs, Paul T.;SIAM J. Numer. Anal.,1971

2. The convergence of the Ben-Israel iteration for nonlinear least squares problems;Boggs, Paul T.;Math. Comp.,1976

3. W. E. BOSARGE, JR. (1968) Infinite Dimensional Iterative Methods and Applications, IBM Publications 230-2347, Houston.

4. Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation;Brown, Kenneth M.;Numer. Math.,1971

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zero point principle of ball-near identity operators and applications to implicit operator problem;Fixed Point Theory;2020-02-01

2. Stability of Picard operators under operator perturbations;Annals of West University of Timisoara - Mathematics and Computer Science;2018-12-01

3. Using inexact gradients in a multilevel optimization algorithm;Computational Optimization and Applications;2013-02-27

4. A Universal State-Space Approach to Uncalibrated Model-Free Visual Servoing;IEEE/ASME Transactions on Mechatronics;2012-10

5. Constrained multifidelity optimization using model calibration;Structural and Multidisciplinary Optimization;2012-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3