A Faber series approach to cardinal interpolation

Author:

Chui C. K.,Stöckler J.,Ward J. D.

Abstract

For a compactly supported function φ \varphi in R d {\mathbb {R}^d} we study quasiinterpolants based on point evaluations at the integer lattice. We restrict ourselves to the case where the coefficient sequence λ f \lambda f , for given data f, is computed by applying a univariate polynomial q to the sequence φ | Z d \varphi {|_{{\mathbb {Z}^d}}} , and then convolving with the data f | Z d f{|_{{\mathbb {Z}^d}}} . Such operators appear in the well-known Neumann series formulation of quasi-interpolation. A criterion for the polynomial q is given such that the corresponding operator defines a quasi-interpolant. Since our main application is cardinal interpolation, which is well defined if the symbol of φ \varphi does not vanish, we choose q as the partial sum of a certain Faber series. This series can be computed recursively. By this approach, we avoid the restriction that the range of the symbol of φ \varphi must be contained in a disk of the complex plane excluding the origin, which is necessary for convergence of the Neumann series. Furthermore, for symmetric φ \varphi , we prove that the rate of convergence to the cardinal interpolant is superior to the one obtainable from the Neumann series.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference12 articles.

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1970.

2. Bivariate cardinal interpolation by splines on a three-direction mesh;de Boor, Carl;Illinois J. Math.,1985

3. CBMS-NSF Regional Conference Series in Applied Mathematics;Chui, Charles K.,1988

4. Interpolation by multivariate splines;Chui, Charles K.;Math. Comp.,1988

5. Cardinal interpolation by multivariate splines;Chui, C. K.;Math. Comp.,1987

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse Problem for a Planar Conductivity Inclusion;SIAM Journal on Imaging Sciences;2023-06-07

2. Symbolic and numerical computation on Bessel functions of complex argument and large magnitude;Journal of Computational and Applied Mathematics;1996-11

3. A note on the tau-method approximations for the Bessel functions Y0(z) and Y1(z);Computers & Mathematics with Applications;1996-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3