An algebraic study of Gauss-Kronrod quadrature formulae for Jacobi weight functions

Author:

Gautschi Walter,Notaris Sotirios E.

Abstract

We study Gauss-Kronrod quadrature formulae for the Jacobi weight function w ( α , β ) ( t ) = ( 1 t ) α ( 1 + t ) β {w^{(\alpha ,\beta )}}(t) = {(1 - t)^\alpha }{(1 + t)^\beta } and its special case α = β = λ 1 2 \alpha = \beta = \lambda - \frac {1}{2} of the Gegenbauer weight function. We are interested in delineating regions in the ( α , β ) (\alpha ,\beta ) -plane, resp. intervals in λ \lambda , for which the quadrature rule has (a) the interlacing property, i.e., the Gauss nodes and the Kronrod nodes interlace; (b) all nodes contained in ( 1 , 1 ) ( - 1,1) ; (c) all weights positive; (d) only real nodes (not necessarily satisfying (a) and/or (b)). We determine the respective regions numerically for n = 1 ( 1 ) 20 ( 4 ) 40 n = 1(1)20(4)40 in the Gegenbauer case, and for n = 1 ( 1 ) 10 n = 1(1)10 in the Jacobi case, where n is the number of Gauss nodes. Algebraic criteria, in particular the vanishing of appropriate resultants and discriminants, are used to determine the boundaries of the regions identifying properties (a) and (d). The regions for properties (b) and (c) are found more directly. A number of conjectures are suggested by the numerical results. Finally, the Gauss-Kronrod formula for the weight w ( α , 1 / 2 ) {w^{(\alpha ,1/2)}} is obtained from the one for the weight w ( α , α ) {w^{(\alpha ,\alpha )}} , and similarly, the Gauss-Kronrod formula with an odd number of Gauss nodes for the weight function w ( t ) = | t | γ ( 1 t 2 ) α w(t) = |t{|^\gamma }{(1 - {t^2})^\alpha } is derived from the Gauss-Kronrod formula for the weight w ( α , ( 1 + γ ) / 2 ) {w^{(\alpha ,(1 + \gamma )/2)}} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference10 articles.

1. On computing Gauss-Kronrod quadrature formulae;Caliò, Franca;Math. Comp.,1986

2. J. J. Dongarra, C. B. Moler, J. R. Bunch & G. W. Stewart, LINPACK Users’ Guide, SIAM, Philadelphia, Pa., 1979.

3. A survey of Gauss-Christoffel quadrature formulae;Gautschi, Walter,1981

4. On a class of orthogonal polynomials;Laščenov, K. V.;Leningrad. Gos. Ped. Inst. U\v{c}. Zap.,1953

5. A note on extended Gaussian quadrature rules;Monegato, Giovanni;Math. Comp.,1976

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3