Residual intersections and linear powers

Author:

Eisenbud David,Huneke Craig,Ulrich Bernd

Abstract

If I I is an ideal in a Gorenstein ring S S , and S / I S/I is Cohen-Macaulay, then the same is true for any linked ideal I I’ ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal L n L_{n} of minors of a generic 2 × n 2 \times n matrix when n > 3 n>3 .

In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I I . For example, suppose that K K is the residual intersection of L n L_{n} by 2 n 4 2n-4 general quadratic forms in L n L_{n} . In this situation we analyze S / K S/K and show that I n 3 ( S / K ) I^{n-3}(S/K) is a self-dual maximal Cohen-Macaulay S / K S/K -module with linear free resolution over S S .

The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference32 articles.

1. Resolutions of determinantal ideals: the submaximal minors;Akin, Kaan;Adv. in Math.,1981

2. The asymptotic nature of the analytic spread;Brodmann, M.;Math. Proc. Cambridge Philos. Soc.,1979

3. Maximal minors and linear powers;Bruns, Winfried;J. Reine Angew. Math.,2015

4. The resolution of the ideal of 2×2 minors of a 2×𝑛 matrix of linear forms;Catalano-Johnson, Michael L.;J. Algebra,1997

5. Hilbert functions, residual intersections, and residually 𝑆₂ ideals;Chardin, Marc;Compositio Math.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3