Nevanlinna characteristic and integral inequalities with maximal radial characteristic for meromorphic functions and for differences of subharmonic functions

Author:

Khabibullin B.

Abstract

Let f f be a meromorphic function on the complex plane with Nevanlinna characteristic T ( r , f ) T(r,f) and maximal radial characteristic ln M ( t , f ) \ln M(t,f) , where M ( t , f ) M(t,f) is the maximum of the modulus | f | |f| on circles centered at zero and of radius t t . A number of well-known and widely used results make it possible to estimate from above the integrals of ln M ( t , f ) \ln M (t,f) over subsets E E on segments [ 0 , r ] [0,r] in terms of T ( r , f ) T(r,f) and the linear Lebesgue measure of E E . In the paper, such estimates are obtained for the Lebesgue–Stieltjes integrals of ln M ( t , f ) \ln M(t,f) with respect to an increasing integration function m m , and the sets E E on which the function m m is not constant can have fractal nature. At the same time, it is possible to obtain nontrivial estimates in terms of the h h -content and h h -Hausdorff measure of the set E E , as well as their partial d d -dimensional power versions with d ( 0 , 1 ] d\in (0,1] . All preceding similar estimates known to the author correspond to the extreme case of d = 1 d=1 and an absolutely continuous integration function m m with density of class L p L^p for p > 1 p>1 . The main part of the presentation is carried out immediately for the differences of subharmonic functions, or δ \delta -subharmonic functions, on circles centered at zero with explicit constants in the estimates. The only restriction in the main theorem is that the modulus of continuity of the function m m should satisfy the Dini condition at zero, and this condition, as a counterexample shows, is essential.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Algebra and Number Theory,Analysis

Reference25 articles.

1. R. Nevanlinna, Le théoremè de Picard–Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.

2. A. A. Gol′dberg and I. V. Ostrovskii, Value distribution of meromorphic functions, Nauka, Moscow, 1970; English transl., Math. Monogr., vol. 236, Amer. Math. Soc., Providence, RI, 2008. \MR{R2435270}

3. Integrals of subharmonic functions and their differences with weight over small sets on a ray;Khabibullin, B. N.;Mat. Stud.,2020

4. Bounds for the number of deficient values of certain classes of meromorphic functions;Edrei, Albert;Proc. London Math. Soc. (3),1962

5. Growth on a ray, distribution of roots by arguments of an entire function of finite order, and a uniqueness theorem;Grishin, A. F.;Teor. Funktsi\u{\i} Funktsional. Anal. i Prilozhen.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3