Applications of a Grassmannian technique to hyperbolicity, Chow equivalency, and Seshadri constants

Author:

Riedl Eric,Yang David

Abstract

In this paper we further develop a Grassmannian technique used to prove results about very general hypersurfaces and present three applications. First, we provide a short proof of the Kobayashi conjecture given previously established results on the Green–Griffiths–Lang conjecture. Second, we completely resolve a conjecture of Chen, Lewis, and Sheng on the dimension of the space of Chow-equivalent points on a very general hypersurface, proving the remaining cases and providing a short, alternate proof for many of the previously known cases. Finally, we relate Seshadri constants of very general points to Seshadri constants of arbitrary points of very general hypersurfaces.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Algebra and Number Theory

Reference18 articles.

1. On the hyperbolicity of general hypersurfaces;Brotbek, Damian;Publ. Math. Inst. Hautes \'{E}tudes Sci.,2017

2. Kobayashi hyperbolicity of the complements of general hypersurfaces of high degree;Brotbek, Damian;Geom. Funct. Anal.,2019

3. [BK] G. Bérczi and F. Kirwan, Non-reductive geometric invariant theory and hyperbolicity, arXiv:1909.11417 (2019).

4. Rationally inequivalent points on hypersurfaces in ℙⁿ;Chen, Xi;Adv. Math.,2021

5. On the logarithmic Green-Griffiths conjecture;Darondeau, Lionel;Int. Math. Res. Not. IMRN,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-01-13

2. Moduli spaces and geometric invariant theory: old and new perspectives;Contemporary Mathematics;2024

3. Entire Curves Producing Distinct Nevanlinna Currents;International Mathematics Research Notices;2023-10-26

4. Moment maps and cohomology of non-reductive quotients;Inventiones mathematicae;2023-09-26

5. Algebraic hyperbolicity of very general surfaces;Israel Journal of Mathematics;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3