The orthonormal Strichartz inequality on torus

Author:

Nakamura Shohei

Abstract

In this paper, motivated by recent works due to Frank-Lewin-Lieb-Seiringer and Frank-Sabin, we study the Strichartz inequality on torus with the orthonormal system input and obtain sharp estimates in a certain sense. In particular, we will reveal the tradeoff relation between Sobolev regularity and Schatten exponent gain where the 1 / p 1/p derivative-loss Strichartz inequality plays an important role as in the context on compact manifold due to Burq-Gérard-Tzvetkov. An application of the inequality shows the local well-posedness to the periodic Hartree equation describing the infinitely many quantum particles interacting with the power type potential.

Funder

Japan Society for the Promotion of Science

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference37 articles.

1. On the Strichartz estimates for the kinetic transport equation;Bennett, Jonathan;Comm. Partial Differential Equations,2014

2. The Sobolev inequality on the torus revisited;Bényi, Árpád;Publ. Math. Debrecen,2013

3. On the Strichartz estimates for orthonormal systems of initial data with regularity;Bez, Neal;Adv. Math.,2019

4. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations;Bourgain, J.;Geom. Funct. Anal.,1993

5. Improved estimates for the discrete Fourier restriction to the higher dimensional sphere;Bourgain, Jean;Illinois J. Math.,2013

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3