Monotonicity of dynamical degrees for Hénon-like and polynomial-like maps

Author:

Bianchi Fabrizio,Dinh Tien-Cuong,Rakhimov Karim

Abstract

We prove that, for every invertible horizontal-like map (i.e., Hénon-like map) in any dimension, the sequence of the dynamical degrees is increasing until that of maximal value, which is the main dynamical degree, and decreasing after that. Similarly, for polynomial-like maps in any dimension, the sequence of dynamical degrees is increasing until the last one, which is the topological degree. This is the first time that such a property is proved outside of the algebraic setting. Our proof is based on the construction of a suitable deformation for positive closed currents, which relies on tools from pluripotential theory and the solution of the d , ¯ d, \bar \partial , and d d c dd^c equations on convex domains.

Funder

Agence Nationale de la Recherche

Publisher

American Mathematical Society (AMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mañé-Manning formula for expanding measures for endomorphisms of ℙ^{};Transactions of the American Mathematical Society;2024-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3