Canonical surgeries in rotationally invariant Ricci flow

Author:

Buttsworth Timothy,Hallgren Maximilien,Zhang Yongjia

Abstract

We construct a rotationally invariant Ricci flow through surgery starting at any closed rotationally invariant Riemannian manifold. We demonstrate that a sequence of such Ricci flows with surgery converges to a Ricci flow spacetime in the sense of Kleiner and Lott [Acta Math. 219 (2017), pp. 65–134]. Results of Bamler-Kleiner [Acta Math. 228 (2022), pp. 1–215] and Haslhofer [Proc. Amer. Math. Soc. 150 (2022), pp. 5433–5437] then guarantee the uniqueness and stability of these spacetimes given initial data. We simplify aspects of this proof in our setting, and show that for rotationally invariant Ricci flows, the closeness of spacetimes can be measured by equivariant comparison maps. Finally we show that the blowup rate of the curvature near a singular time for these Ricci flows is bounded by the inverse of remaining time squared.

Publisher

American Mathematical Society (AMS)

Reference46 articles.

1. Mean curvature flow through singularities for surfaces of rotation;Altschuler, Steven;J. Geom. Anal.,1995

2. The zero set of a solution of a parabolic equation;Angenent, Sigurd;J. Reine Angew. Math.,1988

3. Minimally invasive surgery for Ricci flow singularities;Angenent, Sigurd B.;J. Reine Angew. Math.,2012

4. Degenerate neckpinches in Ricci flow;Angenent, Sigurd B.;J. Reine Angew. Math.,2015

5. An example of neckpinching for Ricci flow on 𝑆ⁿ⁺¹;Angenent, Sigurd;Math. Res. Lett.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3