Piecewise linear functions representable with infinite width shallow ReLU neural networks

Author:

McCarty Sarah

Abstract

This paper analyzes representations of continuous piecewise linear functions with infinite width, finite cost shallow neural networks using the rectified linear unit (ReLU) as an activation function. Through its integral representation, a shallow neural network can be identified by the corresponding signed, finite measure on an appropriate parameter space. We map these measures on the parameter space to measures on the projective n n -sphere cross R \mathbb {R} , allowing points in the parameter space to be bijectively mapped to hyperplanes in the domain of the function. We prove a conjecture of Ongie et al. [A Function Space View of Bounded Norm Infinite Width ReLU Nets: The Multivariate Case, arXiv, 2019] that every continuous piecewise linear function expressible with this kind of infinite width neural network is expressible as a finite width shallow ReLU neural network.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics,Analysis,Algebra and Number Theory

Reference19 articles.

1. Understanding Deep Neural Networks with Rectified Linear Units;Arora, Raman,2018

2. Breaking the curse of dimensionality with convex neutral networks;Bach, Francis;J. Mach. Learn. Res.,2017

3. For Valid Generalization the Size of the Weights is More Important than the Size of the Network;Bartlett, Peter L,1996

4. Harmonic analysis of neural networks;Candès, Emmanuel J.;Appl. Comput. Harmon. Anal.,1999

5. Some Theorems on Distribution Functions;Cramér, H.;J. London Math. Soc.,1936

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3