On the cosmetic crossing conjecture for special alternating links

Author:

Boninger Joe

Abstract

We prove that a family of links, which includes all special alternating knots, does not admit non-nugatory crossing changes which preserve the isotopy type of the link. Our proof incorporates a result of Lidman and Moore [Trans. Amer. Math. Soc. 369 (2017), pp. 3639–3654] on crossing changes to knots with L L -space branched double-covers, as well as tools from Scharlemann and Thompson’s [Comment. Math. Helv. 64 (1989), pp. 527–535] proof of the cosmetic crossing conjecture for the unknot.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics,Analysis,Algebra and Number Theory

Reference20 articles.

1. Cosmetic crossings and Seifert matrices;Balm, Cheryl;Comm. Anal. Geom.,2012

2. Knots without cosmetic crossings;Balm, Cheryl Jaeger;Topology Appl.,2016

3. Twisting quasi-alternating links;Champanerkar, Abhijit;Proc. Amer. Math. Soc.,2009

4. Heegaard Floer homology and knots determined by their complements;Gainullin, Fyodor;Algebr. Geom. Topol.,2018

5. On the signature of a link;Gordon, C. McA.;Invent. Math.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3