Full discretization error analysis of exponential integrators for semilinear wave equations

Author:

Dörich Benjamin,Leibold Jan

Abstract

In this article we prove full discretization error bounds for semilinear second-order evolution equations. We consider exponential integrators in time applied to an abstract nonconforming semidiscretization in space. Since the fully discrete schemes involve the spatially discretized semigroup, a crucial point in the error analysis is to eliminate the continuous semigroup in the representation of the exact solution. Hence, we derive a modified variation-of-constants formula driven by the spatially discretized semigroup which holds up to a discretization error. Our main results provide bounds for the full discretization errors for exponential Adams and explicit exponential Runge–Kutta methods. We show convergence with the stiff order of the corresponding exponential integrator in time, and errors stemming from the spatial discretization.

As an application of the abstract theory, we consider an acoustic wave equation with kinetic boundary conditions, for which we also present some numerical experiments to illustrate our results.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference39 articles.

1. Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods;Alonso-Mallo, I.;IMA J. Numer. Anal.,2018

2. Avoiding order reduction when integrating reaction-diffusion boundary value problems with exponential splitting methods;Alonso-Mallo, I.;J. Comput. Appl. Math.,2019

3. The deal.II library, version 9.2;Alzetta, Giovanni;J. Numer. Math.,2018

4. deal.II—a general-purpose object-oriented finite element library;Bangerth, W.;ACM Trans. Math. Software,2007

5. Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise;Cai, M.;J. Sci. Comput.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3