Tropical curves, graph complexes, and top weight cohomology of ℳ_{ℊ}

Author:

Chan Melody,Galatius Søren,Payne Sam

Abstract

We study the topology of a space Δ g \Delta _{g} parametrizing stable tropical curves of genus g g with volume 1 1 , showing that its reduced rational homology is canonically identified with both the top weight cohomology of M g \mathcal {M}_g and also with the genus g g part of the homology of Kontsevich’s graph complex. Using a theorem of Willwacher relating this graph complex to the Grothendieck–Teichmüller Lie algebra, we deduce that H 4 g 6 ( M g ; Q ) H^{4g-6}(\mathcal {M}_g;\mathbb {Q}) is nonzero for g = 3 g=3 , g = 5 g=5 , and g 7 g \geq 7 , and in fact its dimension grows at least exponentially in g g . This disproves a recent conjecture of Church, Farb, and Putman as well as an older, more general conjecture of Kontsevich. We also give an independent proof of another theorem of Willwacher, that homology of the graph complex vanishes in negative degrees.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference53 articles.

1. Weights on cohomology, invariants of singularities, and dual complexes;Arapura, Donu;Math. Ann.,2013

2. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Arbarello, Enrico,2011

3. The tropicalization of the moduli space of curves;Abramovich, Dan;Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4),2015

4. [AW{\v{Z}}20] Assar Andersson, Thomas Willwacher, and Marko Živković, Oriented hairy graphs and moduli spaces of curves, preprint arXiv:2005.00439v1, 2020.

5. Cohomology of stacks;Behrend, K.,2004

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linkage of graphs with flows;Journal of Combinatorial Theory, Series A;2024-08

2. On the top-weight rational cohomology of g;Geometry & Topology;2024-03-13

3. Weight 11 Compactly Supported Cohomology of Moduli Spaces of Curves;International Mathematics Research Notices;2024-01-17

4. On the weight zero compactly supported cohomology of;Forum of Mathematics, Sigma;2024

5. The Ceresa class and tropical curves of hyperelliptic type;Forum of Mathematics, Sigma;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3