We prove the well-posedness, locally in time, of the motion of two fluids flowing according to Darcy’s law, separated by a sharp interface in the absence of surface tension. We first reformulate the problem using favorable variables and coordinates. This results in a quasilinear parabolic system. Energy estimates are performed, and these estimates imply that the motion is well-posed for a short time with data in a Sobolev space, as long as a condition is satisfied. This condition essentially says that the more viscous fluid must displace the less viscous fluid. It should be true that small solutions exist for all time; however, this question is not addressed in the present work.