Non-linear and non-stationary modes of the lower branch of the incompressible boundary layer flow due to a rotating disk

Author:

Turkyilmazoglu M.

Abstract

In this paper a theoretical study is undertaken to investigate the structure of the lower branch neutral stability modes of three-dimensional small disturbances imposed on the incompressible Von Karman’s boundary layer flow due to a rotating disk. Particular attention is given to the short-wavelength non-linear non-stationary cross-flow vortex modes at sufficiently high Reynolds numbers with reasonably small scaled frequencies. Following closely the asymptotic frameworks introduced in [Proc. Roy. Soc. London Ser. A 406 (1986), 93–106] and [Proc. Roy. Soc. London Ser. A 413 (1987), 497–513] for the stationary linear and non-linear modes, it is revealed here that the non-stationary modes with sufficiently long time scale can also be described by an asymptotic expansion procedure based on the triple-deck theory. Making use of this approach, which takes into account the non-linear and non-parallel effects, the asymptotic structure of the non-stationary modes is shown to be adjusted by a balance between viscous and Coriolis forces, and resulted from the fact of vanishing shear stress at the disk surface. As a consequence of the matching of the solutions in adjacent regions it is found that in the linear case the wavenumber and the orientation of the lower branch modes are governed by an eigenrelation, which is akin to the one obtained previously in [Proc. Roy. Soc. London Ser. A 406 (1986), 93–106] for the stationary modes. The asymptotic theory shows that the non-parallelism has a destabilizing effect. A Landau-type equation for the modulated vortex amplitude with coefficients that are often difficult to get from finite Reynolds number computations has also been obtained from a weakly non-linear analysis in the limit of infinitely large Reynolds numbers. The non-linearity has also been found to be destabilizing for both positive and negative frequency waves, though finite amplitude growth of a disturbance having positive frequency close to the neutral location is more effective.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3