Hilbert problem for a multiply connected circular domain and the analysis of the Hall effect in a plate

Author:

Antipov Y.,Silvestrov V.

Abstract

In this paper we analyze the Hilbert boundary-value problem of the theory of analytic functions for an ( N + 1 ) (N+1) -connected circular domain. An exact series-form solution has already been derived for the case of continuous coefficients. Motivated by the study of the Hall effect in a multiply connected plate we extend these results by examining the case of discontinuous coefficients. The Hilbert problem maps into the Riemann-Hilbert problem for symmetric piece-wise meromorphic functions invariant with respect to a symmetric Schottky group. The solution to this problem is derived in terms of two analogues of the Cauchy kernel, quasiautomorphic and quasimultiplicative kernels. The former kernel is known for any symmetric Schottky group. We prove the existence theorem for the second (quasimultiplicative) kernel for any Schottky group (its series representation is known for the first class groups only). We also show that the use of an automorphic kernel requires the solution to the associated real analogue of the Jacobi inversion problem, which can be bypassed if we employ the quasiautomorphic and quasimultiplicative kernels. We apply this theory to a model steady-state problem on the motion of charged electrons in a plate with N + 1 N+1 circular holes with electrodes and dielectrics on the walls when the conductor is placed at a right angle to the applied magnetic field.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference26 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Riemann–Hilbert problem on a hyperelliptic surface and uniformly stressed inclusions embedded into a half-plane subjected to antiplane strain;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-08

2. Method of automorphic functions for an inverse problem of antiplane elasticity;The Quarterly Journal of Mechanics and Applied Mathematics;2019-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3