Stable maps, Q-operators and category 𝒪

Author:

Hernandez David

Abstract

Motivated by Maulik-Okounkov stable maps associated to quiver varieties, we define and construct algebraic stable maps on tensor products of representations in the category O \mathcal {O} of the Borel subalgebra of an arbitrary untwisted quantum affine algebra. Our representation-theoretical construction is based on the study of the action of Cartan-Drinfeld subalgebras. We prove the algebraic stable maps are invertible and depend rationally on the spectral parameter. As an application, we obtain new R R -matrices in the category O \mathcal {O} and we establish that a large family of simple modules, including the prefundamental representations associated to Q Q -operators, generically commute as representations of the Cartan-Drinfeld subalgebra. We also establish categorified Q Q QQ^* -systems in terms of the R R -matrices we construct.

Publisher

American Mathematical Society (AMS)

Subject

Mathematics (miscellaneous)

Reference36 articles.

1. Braid group action and quantum affine algebras;Beck, Jonathan;Comm. Math. Phys.,1994

2. Quantum Grothendieck rings as quantum cluster algebras;Bittmann, Léa;J. Lond. Math. Soc. (2),2021

3. Hidden Grassmann structure in the 𝑋𝑋𝑍 model. II. Creation operators;Boos, H.;Comm. Math. Phys.,2009

4. Quantum affine algebras;Chari, Vyjayanthi;Comm. Math. Phys.,1991

5. Quantum affine algebras and affine Hecke algebras;Chari, Vyjayanthi;Pacific J. Math.,1996

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theta Series for Quantum Loop Algebras and Yangians;Communications in Mathematical Physics;2024-09-14

2. A (q, t)-Deformation of the 2d Toda Integrable Hierarchy;Communications in Mathematical Physics;2024-08-20

3. A functor for constructing R$R$‐matrices in the category O$\mathcal {O}$ of Borel quantum loop algebras;Journal of the London Mathematical Society;2023-09-14

4. Shifted Quantum Groups and Matter Multiplets in Supersymmetric Gauge Theories;Communications in Mathematical Physics;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3